Перевод: со всех языков на все языки

со всех языков на все языки

существует реальная опасность того, что

  • 1 существует реальная опасность того, что

    Существует реальная опасность того, что-- A real possibility exists that the program will prove a total failure.

    Русско-английский научно-технический словарь переводчика > существует реальная опасность того, что

  • 2 если существует реальная опасность того, что

    Если существует реальная опасность того, что-- If eminent danger exists that the patrol vessel may be seized by a hostile target, it would emit a radio distress signal and dive.

    Русско-английский научно-технический словарь переводчика > если существует реальная опасность того, что

  • 3 опасность

    Опасность - danger (of, in); hazard, risk (of) (риск); possibility (of), potential (for); иногда в английском языке опускается
     Of particular concern for the turbine is the possibility of locally quenching the hot inner casing.
     The disadvantages, however, include the significantly increased pressure drop and the potential for thermal stress problems associated with the periodic variations of the heat transfer coefficients.

    Русско-английский научно-технический словарь переводчика > опасность

  • 4 того

    задолго до того как

    Русско-английский научно-технический словарь переводчика > того

  • 5 существовать

    Существовать - to exist, to be, to be present; there to be, to be available (иметься); to occur (проявляться)
     High tensile stresses at the bore of the order of 480 to 550 MPa were present in tests where ball fracture occurred.

    Русско-английский научно-технический словарь переводчика > существовать

  • 6 реальный

    Русско-английский научно-технический словарь переводчика > реальный

  • 7 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 8 surge

    1. помпаж
    2. перенапряжение
    3. колебание (числа оборотов турбины)
    4. импульсное перенапряжение
    5. значительное колебание оборотов (двигателя)
    6. гидравлический удар
    7. выброс тока
    8. выброс напряжения
    9. бросок напряжения

     

    бросок напряжения
    Волна напряжения переходного процесса, распространяющаяся по линии или по цепи и характеризующаяся быстрым нарастанием, за которым следует более медленное снижение напряжения (МСЭ-Т K.43, МСЭ-Т K.48).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    выброс напряжения
    Динамическое изменение напряжения в сети электропитания в виде повышения напряжения за верхний допустимый предел.
    [ ГОСТ 19542-93

    Выброс напряжения – динамическое кратковременное отклонение напряжения с последующим возвращением к исходному значению.

    В отличие от заброса напряжения причинами выброса напряжения могут быть не только изменение нагрузки, но и повреждения электрических сетей, процессы коммутации и др.
    С точки зрения электромагнитной совместимости выброс напряжения рассматривается как помеха, воздействующая на работу технического средства. По длительности и амплитуде выброса напряжения нормативные документы различают несколько степеней жесткости испытаний.

    При испытаниях на устойчивость ТС должно быть подвергнуто воздействию выбросов напряжения не менее трёх раз, с интервалом между ними не менее 10 с.
    Информация об устойчивости цифровых устройств релейной защиты к выбросам напряжения содержится в работе [3].

    Литература
    1. ГОСТ Р 51317.4.1-99 (МЭК 61000-4-11-94). Устойчивость к динамическим изменениям напряжения электропитания. Требования и методы испытаний.
    2. ГОСТ Р 50932-96 Совместимость технических средств электромагнитная. Устойчивость оборудования проводной связи к электромагнитным помехам. Требования и методы испытаний
    3. Захаров О.Г. Требования к портам оперативного питания в технических условиях цифровых устройств релейной защиты. // Вести в электроэнергетике. №5, 2010.//Статью также можно прочесть и на портале «Всё о релейной защите» http://www.rza.org.ua
    4. ГОСТ 23875-88 Качество электрической энергии.Термины и определения [2].
    5. РД 34.35.310-97. Общие технические требования к микропроцессорным устройствам защиты и автоматики энергосистем. М.: ОРГГЭС, 1997 (с изменением №1).

    [ http://maximarsenev.narod.ru/links.html]
     

    Тематики

    EN

     

    выброс тока
    бросок тока
    экстраток


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    гидравлический удар
    Резкое повышение или понижение давления движущейся жидкости при внезапном уменьшении или увеличении скорости потока
    [ ГОСТ 26883-86]

    гидравлический удар
    Удар, создаваемый путем повышения или понижения гидромеханического давления в напорном трубопроводе, вызываемого изменением во времени скорости движения жидкости (газа) в сечении трубопровода.
    [ ГОСТ 15528-86]

    гидравлический удар
    Повышение или понижение гидродинамического давления в напорном трубопроводе, вызванное резким изменением во времени скорости движения жидкости в каком-либо сечении трубопровода.
    Примечание
    Гидравлический удар имеет место при открытии или закрытии затворов, направляющих аппаратов турбин и т.п.
    [СО 34.21.308-2005]

    удар гидравлический
    Резкое повышение давления жидкости в трубопроводе при внезапном изменении скорости потока в случае остановки насосов или быстрого перекрытия трубопровода
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    колебание (числа оборотов турбины)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    перенапряжение в системе электроснабжения
    Превышение напряжения над наибольшим рабочим напряжением, установленным для данного электрооборудования.
    [ ГОСТ 23875-88]

    перенапряжение
    Напряжение между двумя точками электротехнического изделия (устройства), значение которого превосходит наибольшее рабочее значение напряжения.
    [ ГОСТ 18311-80]

    перенапряжение (в сети)
    Любое напряжение между одной фазой и землей или между фазами, имеющее значение, превышающее соответствующий пик наибольшего рабочего напряжения оборудования
    [ ГОСТ Р 52565-2006]

    перенапряжение
    Всякое повышение напряжения сверх амплитуды длительно допустимого рабочего фазного напряжения.
    [Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений]

    перенапряжение
    Временное увеличение напряжения в конкретной точке электрической системы выше порогового значения.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    перенапряжение
    Возникновение избыточного напряжения, возникающего при сбросе нагрузки или кратковременном воздействии мощных помех. Одним из основных источников перенапряжения являются грозовые разряды в атмосфере, которые могут повредить интерфейсное оборудование, подключенное к кабельным линиям связи.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]


    перенапряжение
    -
    [IEV number 151-15-27]

    EN

    over-voltage
    over-tension

    voltage the value of which exceeds a specified limiting value
    [IEV number 151-15-27]

    voltage swell
    temporary increase of the voltage magnitude at a point in the electrical system above a threshold
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    surtension, f
    tension électrique dont la valeur dépasse une valeur limite spécifiée
    [IEV number 151-15-27]

    surtension temporaire à fréquence industrielle
    augmentation temporaire de l’amplitude de la tension en un point du réseau d’énergie électrique au-dessus d’un seuil donné
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Смотри также

     

    помпаж
    Неустойчивый режим работы турбокомпрессора, характеризующийся последовательно чередующимся нагнетанием газа в сеть и выбрасыванием газа из сети на всасывание.
    [ ГОСТ 28567-90]

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge

  • 9 депрессивные неврозы

    Состояния, с психодинамической точки зрения соответствующие психоневрозам, главным проявлением которых является депрессивный аффект. Существуют несколько форм депрессивного невроза. Большинство из них предполагают те же провоцирующие факторы и характерные личностные черты, что и большинство аффективных расстройств, но при депрессивных неврозах оценка реальности сохранна, а симптомы менее выражены, чем при психотических реакциях.
    Хотя в настоящее время реактивная депрессия в целом отождествляется с невротической депрессией или ситуационной депрессией, изначально термин относился к психотической депрессии, которая, в отличие от эндогенной депрессии, возникает как реакция на провоцирующие факторы. Депрессивное настроение развивается у лиц, переживающих изменения или угрозу изменений жизни. При этом важным психодинамическим фактором является сознательное или бессознательное восприятие таких перемен, как личная утрата. Обычно утрату легко идентифицировать. Это может быть измена возлюбленного, смерть супруга, развод, потеря работы и т.д. Однако в других ситуациях необходимо установить ее бессознательное символическое значение. Например, продвижение по службе может переживаться скорее как утрата, а не как успех, если более низкий статус использовался индивидом в качестве защиты от эдипова конфликта; на бессознательном уровне потеря защитной адаптации приводит к появлению чувства вины, связанного с эдиповым триумфом: продвижение по службе символически означает превосходство над отцом.
    Многие люди, у которых сформировалась константность объекта, остро реагируют на изменения. Для адаптации в новых условиях им необходимо ослабить связь с прошлым, пережить утрату обретенного, что типично для процесса печали. Человек может испытывать трудности после утраты, особенно если он был слишком зависим от других, чтобы сохранить самооценку. Лица с подобной зависимостью особенно подвержены ситуационной депрессии. Они сохраняют интенсивные, но амбивалентные внутренние отношения с психическими репрезентантами утраченного объекта. Любовь к репрезентируемому объекту приводит к идентификации, направленной на удержание его внутри себя, тогда как чувство ненависти требует его разрушения. Поскольку индивид идентифицируется с утраченным объектом, он переживает эти деструктивные силы как направленные против себя самого. Если при этом депрессивные симптомы выражены незначительно, это состояние обозначается как депрессивный невроз; однако ситуационная депрессия может перейти в депрессию более серьезную.
    Циклотимические расстройства сходны с маниакально-депрессивными расстройствами в колебаниях настроения от приподнятости до подавленности; однако сравнительно незначительная выраженность фаз и их длительности не дает оснований для постановки диагноза большого биполярного аффективного расстройства. Чувство неадекватности в периоды депрессии и воодушевление при повышении самооценки предполагают нарциссическую личностную организацию. Эти флуктуации являются кратковременными и нестабильными элементами личности. Психоаналитические исследования лиц с циклотимическими расстройствами позволили выявить чередовавшиеся в детском возрасте переживания отвержения и исполнения нарциссических притязаний. Взрослый индивид относится к реальным или воображаемым стимулам сообразно своей детской модели. Так, для детей, о которых заботились несколько человек, существует опасность циклотимических расстройств. Фрустрация одной матерью приводит к поиску другой, приносящей удовлетворение; этот паттерн повторяется каждый раз, когда материнская фигура "плоха" или приносит разочарования.
    Если аффект ограничен депрессивным настроением, сопровождается потерей интереса и удовольствия от деятельности на протяжении нескольких лет, то иногда используется термин дистимическое расстройство. Однако при этом тяжесть расстройств и психодинамические факторы не отличаются от таковых при депрессивном неврозе, с которым оно отождествляется.
    Депрессивный характер означает хроническую подверженность депрессивному настроению; индивиду либо недостает способности испытывать удовольствие, либо это переживание кратковременно и сопровождается тревогой. Депрессия при этом не является выраженной, не отличается остротой и не переживается как симптом; индивид воспринимает ее просто как часть своей личности. Такие люди склонны к пессимизму — на обращение "доброе утро" они, скорее всего, ответят типичным вопросом: "Да что в нем, собственно, доброго?". Для них характерна также пассивно-рецептивная позиция, они постоянно жалуются на несправедливость и неосуществимость притязаний.
    Психоаналитические исследования показали, что реальная или воображаемая враждебность родителей вызывает у ребенка чувство, что раз его наказывают, значит, он того заслуживает. Зрелая жизнь такого индивида отражает раннюю психодинамику: он склонен к самоосуждению и жертвованию собственным удовольствием, чтобы обрести расположение других.
    Разграничение этих синдромов не является окончательным. Например, циклотимические и дистимические расстройства — в зависимости от клинической картины — могут расцениваться и как симптоматические неврозы, и как неврозы характера.
    \
    Лит.: [4, 79, 203, 294, 849]

    Словарь психоаналитических терминов и понятий > депрессивные неврозы

См. также в других словарях:

  • DSM-IV — У этого термина существуют и другие значения, см. DSM. DSM IV (Diagnostic and Statistical Manual of mental disorders  Руководство по диагностике и статистике психических расстройств)  принятая в США многоосевая нозологическая система.… …   Википедия

  • ЭФФЕКТ МЕДИА — феномен, связанный с изменениями в поведении людей, которые напрямую зависят от информации, полученной из массмедиа. Разработаны различные теории понимания Э.М., влияния массмедиа на социум: социального обучения, культивации, селективного… …   Социология: Энциклопедия

  • МАЛЬТУЗИАНСТВО — МАЛЬТУЗИАНСТВО, теория народонаселения, названная по имени англ. экономиста священника Томаса Роберта Мальтуса (Malthus, 1766 1834), опубликовавшего сочинение под названием«Ап essay on the principle of population» (L., 1798; рус.… …   Большая медицинская энциклопедия

  • ТУБЕРКУЛЕЗ — ТУБЕРКУЛЕЗ. Содержание: I. Исторический очерк............... 9 II. Возбудитель туберкулеза............ 18 III. Патологическая анатомия............ 34 IV. Статистика.................... 55 V. Социальное значение туберкулеза....... 63 VІ.… …   Большая медицинская энциклопедия

  • КОГЕН — (Cohen) Герман (1842 1918) немецкий философ, основатель и виднейший представитель марбургской школы неокантианства. Основные работы: ‘Теория опыта Канта’ (1885), ‘Обоснование Кантом этики’ (1877), ‘Обоснование Кантом эстетики’ (1889), ‘Логика… …   История Философии: Энциклопедия

  • Ликвидность — (Liquidity) Ликвидность это мобильность активов, обеспечивающая возможность бесперебойной оплаты обязательств Экономическая характеристика и коэффициент ликвидности предприятия, банка, рынка, активов и инвестиций как важный экономический… …   Энциклопедия инвестора

  • Домициан — В Википедии есть статьи о других людях с именем Домициан. Тит Флавий Домициан лат. Titus Flavius Domitianus …   Википедия

  • Священная Римская империя — германской нации лат. Sacrum Imperium Romanum Nationis Germanicæ нем. Heiliges Römisches Reich Deutscher Nation Империя …   Википедия

  • Кризис Позднего Cредневековья в Священной Римской империи — Территория Священной Римской империи в 962 1806 гг. Священная Римская империя германской нации (лат. Sacrum Imperium Romanum Nationis Teutonicae, нем. Heiliges Römisches Reich Deutscher Nation) государственное образование, существовавшее с 962 г …   Википедия

  • Кризис Позднего Средневековья в Священной Римской империи — Территория Священной Римской империи в 962 1806 гг. Священная Римская империя германской нации (лат. Sacrum Imperium Romanum Nationis Teutonicae, нем. Heiliges Römisches Reich Deutscher Nation) государственное образование, существовавшее с 962 г …   Википедия

  • Первый Рейх — Территория Священной Римской империи в 962 1806 гг. Священная Римская империя германской нации (лат. Sacrum Imperium Romanum Nationis Teutonicae, нем. Heiliges Römisches Reich Deutscher Nation) государственное образование, существовавшее с 962 г …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»